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ABSTRACT: No effect of free volume (ca. 10'30m3) introduced
near the ignitlon wire could be detected in the experimental
pressure-time curves for confined burning of an explosive,
Rupture of the DDT tubes in the region of confined burning,

for shots exhibiting transition to detonation, occurs more than
100 psec after a pressure of 1 kbar is first attalned; the
plastic deformation of the tube requires more than 45 usec, The
long duration of the confinement and the pressure rises observed
indicate that initiating pressures for DINA and pentolite are
reached in the burning area near the igniter. A 1/4 in. thick
Lucite filter in the path of the subsonic ionization front,
downstream from the burning area, has no detectable effect on
the propagation of the front. This disturbance is therefore
pressure initiated and propagated; it is not a flame front.

PUBLISHED APRIL 1963

APPROVED BY: Carl Boyars, Chief

Physical Chemistry Division
CHEMISTRY RESEARCH DEPARTMENT
U, S, NAVAL ORDNANCE LABORATORY
WHITE OAK, SILVER SPRING, MARYLAND




NOLTR 63-18 12 February 1963

This report covers progress on a continuing program for
the investigation of the transition from deflagration to
detonation in high explosives and propellants; 1t 1s supported
by project FR-59, Transition from Deflagration to Detonation,
The present work produced new information on the sequence of
events in the transitional region between ignition and steady
state detonation as well as additional information on the
nature of a subsonic ionized front in the transitional regilon,
The new information contributes to the understanding of the
sensitivity behavior of explosive materials,
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TRANSITION FROM SLOW BURNING TO DETONATION:
FURTHER STUDIES OF THE FREE VOLUME AND
THE LOW VELOCITY REGIME IN CAST PENTOLITE

This progress report covers further studies of the transi-
tion from burning to detonation (DDT) in cast pentolite. It
utllizes the experimental design of Macek (1) and lonization
probes (1), strain gages (2), and pressure collapse probes (2),
instrumentation described in the earlier reports. Quite simply,
the experiments are designed to introduce a very large hot spot™
in the cast explosive by use of a heated nichrome wire. The
heated region is under high back confinement provided by the
tube's bolt closure and under high lateral confinement provided
by thick tube walls. The tubes are seamless, cold-drawn steel;
their dimensions and properties are given in an appendix.

The nichrome wire and hence the ignition area is located
about 4.8 mm (3/16 in.) from the end of the closure bolt i.e.,
%/16 in. inside the cast explosive. That a burning reaction is
induced by heating from the wire is indicated by the radial
plastic deformation of about % mm. and rupture of the tube very
near the hot wire as well as by the increase in pressure with
time measured by strain gages mounted on the outside of the
tube about an inch beyond the position of the nichrome wire,.

Of course, such a reaction is also deduced from its downstream
effects: pressure fronts detected by pressure collapse probes
sensitive to about 0.8 kbar, ionization fronts detected by
ionization probes, and detonation indicated by the velocities of
these fronts or a witness plate at the end of the tube or both.

Work covered in this report had two objectives: the inves-
tigation of the effect of introducing free volume on the observed
pressure-time rise caused by burning near the ignition area and
of the effect of interrupting established pressure and ionization
fronts by a Lucite filter which would transmlt pressures but
would terminate any disturbances dependent on heat conduction or
convection. Although the first investigation produced negative
results, 1t yielded pressure-time curves for pentolite (previous
curves are for DINA only) and new detailed information on the
time-history of transition events. All results are reported in
detail below.

* This 1s not to be confused with hot spots assumed to occur as
a result of impact; such areas are estimated to be 0.0l to
0.001 mm in diameter and would not be detectable.
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Introducing Free Volume into Charge

Previous work by Micek (3) on the development of detona-
tion from thermal initiation under conditions of massive
confinement has shown that a rapid rise of pressure at the face
of a cast explosive charge is necessary for the development of
a shock wave within the body of the charge. Such a shock wave
may or may not eventually grow into a steadily propagating
detonation. A finite rise time for pressure has been observed
in this work. Thermal ignltion necessarlily involves a gradual
pressure buildup because of losses of heat to the surroundings.
However, a one-dimensional adiabatic model for ignition of
confined charges described by Madek results in an instantaneous
pressure step in the absence of a free volume near the point of
ignition. The finite rise time may be ascribed then to an
effective free volume which is caused by thermal losses, the
compressibility of the charge and its confinement, or by minute
cavities which cannot be avoided in the casting process.
Although cast charges are prepared carefully to avoild the
introduction of cavities, it is nearly impossible to be certain
that such cavities are absent.

In the theoretical development, the pressure-time profile
of a burning confined charge is given approximately by the
expression p = p ekt, where k is inversely proportional to the
free volume/unit area of the charge. From a fit of an_experi-
mental curve, an effective free volume of about 10-3em? was
estimated for the cast charges used. The model employed in
this estimation is based on the assumption that a plane defla-
gration was proceeding through the charge and that the free
volume was uniformly distributed at the surface where defla-
gration originated (See Appendix A).

To test the possibility that rise time 1s dependent on
free volumes of this magnitude, known free wvolumes can be
introduced into the charges and measurements made of the rise
time. The constant k in the previously mentioned equation
should be a linear function of the reciprocal of the known free
volume., This test will be successful only if the variation in
rise time due to the known free volume 1s greater than the vari-
ation caused by the lack of reproducibility of the charges.

Some shots have been fired in which a cavity near the
ignition wire was introduced into pentolite charges by with-
drawal of a fine wire which had been cast into the explosive.
Tre wire was held in position during the casting process by
small holes drilled through the casing of the charge; the holes
were plugged after removal of the wire. The instrumentation

2




- @8

NOLTR 63-18

used in these shots 1s described in references 2 and 3, The
results showed no correlation of rise time or the tendency to
detonate with the hole size (Fig. 1). Duplication of shots was
not achieved. Indeed, the results suggest that the free volumes
purposely introduced must be comparable to those introduced at
random by the casting process, for the pressure-time curves are
indistinguishable from those of earlier work where no free
volume was deliberately introduced.

The steel tubes used for these preliminary shots were the
first of a new lot of tubing because the earlier supply had been
exhausted. The new tubing was ordered to duplicate the original
(See Appendix B). In view of the unpromising preliminary
results, it was thought that the new tubing might introduce
enough differences to invalidate use of the old pressure calibra-
tions and that such uncertainties could be elimated by a cali-
bration of the new tubes. Accordingly the strain-gage circuitry,
to record pressure-time in the burning area, was redesigned, and
the new tubes fitted with strain-gages were calibrated. The new
circultry consisted of a power supply, a bridge circuit with
trimmer resistances to compensate for drifting and a calibration
circuit. The new calibration showed an output linear with
pressure up to 3 kbar (4), as did the original calibration (2);
the new calibration constant is 9.03 mv/kbar. The new tubes are

identical to the o0ld in their response to slow loading.

With the redesigned recording circuit, eight shots of
supposedly identical charges were fired to develop a frame of
reference., The pressure-time curves obtained for this set are
shown in Figures 2 and 3. The charges of Fig. 2 were especially
handled during the casting process to reduce cavities to a mini-
mum. The reproduclibility of these shots is poor; they do not
follow a curve of the exact form p = p_e except for limited

regions at the ends of the curves. The tendency of the curves
to be parallel at the upper ends suggests that the inertia of
the walls is taking over at this point and that one is not
observing a property of the explosive, but of its confinement.
In other words, the pressure is increasing more rapidly than the
walls can move 1in response to that pressure. The upper parts of
the curve on Fig. 3 and three of the curves on Fig. 2 could be
made to coincide closely if the time scale is shifted for each
curve, This manipulation of the data is justified if the
triggering level of the oscllloscope drifts so that each curve
is triggered at a different pressure level, Since our trigger-
ing level could easily shift enough to explain the scatter in
the initial points of the curves, the above manipulation is
Justified and we have therefore some reproducible curves among
those of Figs. 2 and 3. However, this reproducibility occurs

)
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only for shots prepared at the same time and in any group of
shots prepared together, not all shots can be so compared.

The rate of change dp/dt is smaller for charges of Fig. 2
than those of Fig. 3. However, the rates in both Figs. 2 and 3
are appreciably larger than those obtained with the previous
instrumentation (Fig. 1). This is hard to explain since two
sets of cold-drawn tubes showing the same static behavior would
be expected to behave 1n a similar manner under dynamic loading.
One possible explanation is incorrect machining of the tubes
used in the runs of Figs. 2 and 3. It was found by examining
fragments from the last 10 charges fired (group III of Table 1)
that the tubes had been threaded for 57.2 mm (2.25 in.) of their
length instead of the 36.6 mm (1.44 in.) requested. Thus the
threading extended into the region around the hot wire with a
corresponding weakening of the confinement there., If a similar
error occurred earlier, data of the trends of Figs. 2 and 3
might be expected from greater straln and more rapid response
than the regular tubes show to the same dynamic loading. Until
this possibility can be checked, Flg. 1 which corresponds very
closely to the previous work (25 will be used to describe the
confined burning of pentolite.

The rate of change dp/dt at 5 kbar for pentolite (Fig. 1)
is essentially the same as that found for DINA (2). As was
suggested above, this may result from measuring the property of
the confinement in both cases. Also as was pointed out in
previous work, the pressures shown result from using a static
calibration to interpret a dynamic loading; they are therefore
indicative but not necessarily accurate,

The values of d of this work, which may be taken from
Figs. 1, 2 and 3, range from 0.0l to 2 kbar/usec. The lowest
value is 100 to 1000 times greater than the maximum observed in
closed bomb burnings as reported by Wachtell, McKnight and
Shulman (5). Rapid rates such as have been observed in the
present work are necessary 1ln order that mechanlcal shock waves
can form in small charges. Wachtell et al report that enhanced
burning, which they attributed to surface breakup, occurred in
their work. 4

Jacobs and Buck (6) in earlier work on high pressure
burning of explosives also noticed an enhanced burning; it was
observed in the burning of plates of cast TNT and also, to some
extent, in Fivonite. They attributed this rapid burning to
cavities formed in the cooling process which might cause the
burning to proceed in a manner other than normal to the geometri-
cal outer surface of the charges.

7
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In neither case, where enhanced burning was observed, did
detonation occur prior to burn out. Detonation would not be
expected as a result of enhanced burning at the pressure rates
reported; it might occur if particle break-up continued, with
pressure increase, until rates comparable to those observed in
the confined burning of the present work were obtalned. If, on
the other hand, break-up stops, the rate of pressure bulld-up
wlll fall back and a burning rate curve parallel to a normal
curve will be observed. The curves of Wachtell et al show this
tendency.

The poor reproduclbillity and unusual results in the
present work (charge 5 in Fig. 1 and charge 1 in Fig. 2) are
sufficient to show that variabllity in charge preparation and
instrumentation can completely mask any free volume effects,
in the range of free volumes used, for a single shot. Since the
toplc does not seem to justify a statistical study, work on it
has been suspended until such time as more relliable charge
preparation and instrumentation might be avallable.

Time~History of Transition Phenomena

In Ref, 7 1t was reported that DDT experiments instrumented
wlth both strain gages and lonization probes sometimes produced
pressure-time records (strain gages) on which discharges of the
ionization probes were superposed. It was suggested that this
might provide a common time reference for the two records:
pressure-time in the vicinity of the nichrome heating wilre and
- position-time of the ionization front as it moved down the
charge. Some success has been obtained with this approach. The
instrumentation and geometry 1s as shown at the bottom of Fig. 4,
The' discharge of ionization probe 1, which triggered the sweep
for the probe record, was clearly defined on the pressure-time
record of shot 96-6199-2-4 (Fig. 1) thus presenting a common
time point for the two records. In additlion, the failure of the
strailn-gage, presumably caused by the expansion of the conflining
walls, inltiated an obvious drift in the ground line of the probe
record. As a result of these two interactions, it 1s possible to
draw up a schedule of events for this shot as follows:
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Time
pusec

13.8

47.6
50.8

73.2

109.0

142.0

NOLTR 63-18

Shot 96-6199-2-4 (no detonation)

Schedule of Events

(Location,

Distance from
Nichrome wire)

mni

20,6
(14.3 - 27.0)

33.3

20.6
20.6

109.5

185.7

261.9

Event

Pressure from reactlon of
explosive near hot wlre reaches
one kbar and triggers sweep for
strain gage record. (This
occurs 1 to 10 sec. after wire
is heated.)

Discharge of ionizatlon probe 1
(Event common to two records);
this triggers sweep for probe
record.

Pressure record reaches 5 kbar
and goes off scale.

Strain gage falils - plastic
yield of wall starts.

Discharge of probe 2; average
velocity over interval 1.3 mm/
usec,

Discharge of probe 3; average
velocity over interval 2.1 mm/
usec,

Discharge of probe 4; average
velocity over interval 2.3 mm/
usec,

Although no other shots exhibited the common event of
probe discharge, three others showed the failure of the strain-
gage on the probe record.
events, strain gage record going off scale and strain gage
fallure, is only about 3 usec and, therefore, of the same order
of magnitude as the estimated error in time synchronization
(1.2 usec) it is sufficient for the present treatment to con-
sider these events as simultaneous. Even if the separation were

Since the separation of the two later
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considered real, no better estimate can be made of the internal
pressure than 5 kbar at the time plastic yield starts at the
outer wall because the straln gage response during calibration
is non-linear above 3 kbar and because only a static calibration

is used.

Of the three lonization probe records showing the strain-
gage failure, two were from charges in which detonation was
achieved, but one of these (96-6199-2~5) showed an atypical
pressure-time record (see Fig. 1). Consequently, data from the
second charge 96-6199-2-1, for which no pressure record was
obtained, was used to obtain the followlng schedule:

Time (usec): 0 54.8 68 104 114
Event : Probe 1 Strain gage Probe 2 Probe 3 Probe 4
failure '

The velocities over the intervals are respectively 1.1, 2.1, and
7.6 mm/psec, Combination of these data with those of 96-6199-2-4
results in the composite schedule of Fig. 4.

Fig. 4 is meant to be representative of the sequence of
events occurring in shots for which the translition from burning
to steady state detonation has been achieved; it is not an exact
schedule for any specific shot. In addition to the information
already developed, Fig. 4 contains the following items: the
confining walls at the location of the burning area (8 mm beyond
the Nichrome wire) have bulged to the extent of increasing the
0.D. by 2 mm about 100 usec after discharge of the first probe
(see next section); the low velocity ionization front is preceded
by a pressure front of 0,8 kbar or greater amplitude about 20-30
psec earlier (Ref. 8 and Table 1) and by a pressure front of
2 kbar or greater amplitude about 5 psec earlier (8); the pressure
fronts move at about the same velocity as the lonlzation front in
the subsonic region (8). There is some evidence (8) that the
"2 kbar" pressure front exhibits a gradually accelerating velocity
's0 that 1t merges with the steady state ionization front which 1is
discontinuous with the subsonic lonization front; quite possibly
the true 2 kbar front is overtaken by a higher amplitude, higher
veloclity pressure front.

It is of interest that the separation of the 0.8 kbar and
2 kbar fronts, about 15-25 usec, is the same order of magnitude
as the time required for the pressure at the burning area to
increase from 0.8 to 2 kbar (Ref. 2 and Fig. 1). This fact
supports the view that the pressure fronts are the result of the

10
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continuous gas loading in the burning area; they are detected

as 0,8 kbar and 2 kbar fronts only because the collapse probes
respond at those levels, A continuously recording pressure gage
would probably duplicate downstream an attenuated pressure-time
profile of the burning area. Of course, it is impossible to
detect the point at whlich the amplitude of the pressure front
exceeds the response pressure of the probes.

Another aspect of the pressure-time loading of Flg. 1, is
that it is preceded by an unrecorded, long duration, low (if
increasing) amplitude pulse within pressure ranges typical of
the drop-welight impact test. Just as in the impact test, such
a loading would be expected to create hot-spots. Such hot
spots would not be detectable by any of the present instrumenta-
tion, but they would be expected to undergo confined burning and,
if this occurred rapidly enough, it would reinforce the pressure
fronts downstream from the original hot spot area. Since the
time delay to reach 1 kbar at the nichrome wire 1s 1 to 10 sec.,
it is not llikely that such reinforcement can occur within the
present system but it might be a factor to consider in much
- larger systems.

Two cast explosives, DINA and pentolite, have shown success-
ful transition to steady state detonation in the DDT configura-
tion, and two others, Comp B and TNT, have failled to attain such
a transition; for the first pair, the pre-detonation events must
have resulted in a shock of amplitude equal to or greater than
the 1nitiating pressures for these materials in the DDT geometry.
Approximate initiating pressures are 19 and 36 kbar respectively
for pentolite and Comp B (9). (These were measured in steel
tubes 0,5 in, I.D. and 1.5 in. 0.D., a confinement slightly
greater than that of the present work; this would tend to give a
slightly lower critical pressure. Moreover, these charges were
cast around continuous wires, a second factor which might con-
‘tribute to a lower initiating pressure.) These approximate
values are 1,61 and 1,69 times the initilating pressures measured
in the standardized gap test geometry; hence an estimate for
DINA and TNT can be made by multiplying the gap test values by
1.65. This gives approximate initiating pressures of 10,7 and
61.5 kbar respectively for DINA and TNT in the DDT geometry.

Initiating pressures are functions not only of the acceptor
geometry, but also of the donor properties, On the assumption
of simllarity in the pressure loading from tetryl donors
(standardized gap test donor) and the pressure loading generated
by the burning explosive in the DDT test¥, successful transition
for DINA and pentollite means that shock pressures of about 11

* This assumption is beilng examined theoretically (10)
‘ 12

»
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and 19 kbar respectively were attained. Since the strain gage
records indicate an internal pressure of 5 kbar, increasing
exponentially with time, at the beginning of plastic deforma-
tion of the DDT tube and since rupture of the tube does not
occur until about 50 psec later (Fig. 4), 1t seemshighly
probable that pressures as high as 19 kbar can be attained,
although not maintained, in the reacting area. Petrone (10)
has recently found in a 1-D theoretical treatment, that an
exponential pressure rise up to the initlating pressure on the
explosive boundary is sufficient to induce transition to detona-
tion downstream from the boundary. It seems probable that
transition will occur i1f the initiating pressure can be reached
in the burning area and not otherwise, This would explain
successful transition in the DDT configuration for two rela-
tively shock sensitive explosives DINA and pentolite as well as
the fallure to obtain transition for the less sensitive cast
Comp B and TNT (initiating pressures of about 36 and 62 kbar,
respectively). For TNT, the maximum measured pressure in the
burning area was only about 3 kbar (7), and the DDT tubing was
not plastically deformed.

Finally, from Fig. 4, steady state detonation has been
established at 185 mm from the hot wire and possibly earlier,
Therefore, it was probably established before the high pressure
in the burning area had been completely relieved by bursting of
the tube. The average velocity of 2.1 mm/usec between probes
2 and 3 is probably near the constant velocity observed in many
previous runs and probably holds for much of the interval
between probes 1 and 2; there it is masked by the slow bulildup
time in the first part of the interval. It is interesting that
this veloclity is about that to be expected for a plastic wave
when Ehe static value of the bulk modulus of the explosive ls
used,”

*Assume elastic velocity of 2.7 mm/psec, that of Comp B (11),
a loading density p, of 1.7 g/cc, and Poisson's ratio v of

0.3 (12). Then from

= |2k _1-v
¢c=2.7= Po I+v

the bulk modulus k = 76.8 kbar. Measured values for cast
explosives are 48 to 90 kbar (12)., The expected velocity for
the plastic wave would then be approximately \/k/po or 2.2 mm/
usec,

13
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Low-Veloclity Ionization Front

Additional information whilch came from the earlier work on
confined charges was the demonstration of a quasi-stable low
velocity (1-2 mm/usec) ionization front following the pressure
front, initially at approximately the same subsonic velocity
(13). The onset of detonation occurs rapidly but continuously
from the pressure front after it has traveled as much as 10 cm; .
the corresponding change in velocity of the lonization front is ¢
discontinuous and probably involves changling from one disturb-~
ance to another.

In order to characterize the trailing, low-velocity low-
pressure lonization front, an inert barrier was used; this
would stop a flame front while allowing the pressure front to
propagate without appreciable degradation 1f the impedance of
the barrier is near that of the explosive, Flames, which propa-
gate by virtue of the transport of heat and/or reaction products
into a reglon ahead of the burned gas zone, could not traverse
such a barrier., Lucite was used as a barrlier material in
charges prepared and instrumented as shown in Fig. 5. The
pressure probes detect a compression front of 0.8 kbar or more
while the ion probes discharge in an lonization front of a
resistance of 100 ohms or less, The records obtained from this
- work consist of plps on an oscllloscope trace which is triggered
by the initial pressure probe placed about one inch from the hot
wire. Details of instrumentation are given in Refs. 1 and 2.

Although the first probe, a pressure collapse probe, was
used to trigger both oscilloscopes, separate records were
obtained for (a) the set of six pressure probes and (b) the set
of five lonization probes. Within each set, however, there was
no distinction between probes such as a change of amplitude on
adjacent probes., Consequently, for shots in which some probes
of the set failed to function, the usual situation, the record
pips had to be assigned to specific probes. For this purpose,
as well as for scanning the variations from shot-to-shot, a
space-time display of the data proved most helpful. The assign- .
ments are given in Table 1 and displayed in Figs. 6 through 9.
Well within the experimental errors (positioning of thick probes,
variation in synchronization of two scopes, reading of records),
the pressure probe curves indlicate a long path at a constant
subsonic velocity; the veloclity is unaffected by passage through
the Lucite. Some attenuation of the pressure front by the inert
filter and consequent decrease 1n wave veloclty would be

14
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expected. Fallure to observe such an effect” might result from

the long duration of the pressure loading from the burning area »
as contrasted to the short duration of an explosive loading

where attenuation 1is observed. It might, of course, be only the
apparent result from erroneous identification of plps in some

shots, but enough nearly complete runs are present to support

the present assignment.

In these runs the lonization probes proved less reliable K
than the pressure probes. Ionization front data are also dls-
played in Figs. 6 through 9 and confirm the earlier work in
showing the lonization front following the pressure front at
approximately the same velocity. The lonlization front, like the
pressure front, shows no detectable effect of the Luclte fllter
on 1ts veloclty. Note that the second ionization probe response
has been ignored in drawing four of the curves. 1In one case,
that of shot III-9 there 1s no explanatlion of the positlon of
this response, but in the other three the probe location is such
that the rarefaction reflected from the Lucilite surface could
reach the probe and partially quench the reaction producing ions
before the probe responded. In such a case probe response would
be delayed by the amount of time the reaction required to build
up agaln the necessary charge concentration. Thls interpretation
is strengthened by run II-2 in which the velocity of the loniza-
tion front is sufficiently high to discharge the second ioniza-
tion probe before the rarefaction could reach it. It might be
added that 1f the three points described were not lgnored in
drawing the curves, the curves would indicate that the presence
of the Luclte filter caused an Increase in the veloclty of the
ionization front, a phenomenon Tor which there is no reasonable
explanation.

It is customary to study bulld-up processes by considering
the veloclty of the disturbance over successive increments of
the path 1t travels, It should be kept in mind, however, that
taking the derivative (in this case, using the ratio of two
differences) greatly magnifies the error and does not generally
produce smooth trends. Thils is 1llustrated by the veloclity data
of Table 2 which also contalns the slopes read from the constant
velocity section of Figs. 6 through 9; these latter are smoothed
values, but useful in consldering the subsonic regions.

* In the assignments made in Table 1, one third of the shots
showed failure of pressure probe 4, that placed just beyond
the Lucite filter, This might be due to a small attenuation .
of the pressure amplitude which is not reflected by the veloc-

ities within the present precision. The assignment in III-5 .

attributes shorting of pressure probe 4 to a later, higher
pressure front after slight attenuation of the first pressure

front.
22
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TABLE 2

Velocities between Probes (mm/psec)

Initial
Probe: 1 2 % Lucite &4 Initial Separation
Constant of b
Probe Velocity Fronts
o Run Record From Curve usec
I-1 P 1.1 2.7 1.8 2.6 1.9 20.5
1 T - - 2.0 ER]
21 p 3.0 1.6 2.1 2.4 2.0 20.5
T I - 2.2 ] 2.0 2.9
2 P 1.1 2.1 > 2.2 | 2.6 2.1 6.5
2 T - 2.6 2.0 2.4 [ 2.9
4 P 1.3 0.9 1.5 5.0 - 1.5 -
T T - 2.0 4.5
III- 2 P -« 0.6 (9.5) 3.4 | 4.9 4,1 —
3| p 1.0 | 1.6 2.4 o4 | - 1.7 —
Q 5] p -« 1.9 -~ 0.6 ] 2.1 1.6 4(10)
I I - 1.4 3.4 -
‘I', 5 P 0.9 2.9 1.6 1.6 20
_ 6 P 3.6 1.5 1.4 1.5 —
7 P 1.8 2.8 1.7 2.0 4,1(20.0)
7 T = .0 2.0 | 3.6
8 P 3.6 —_—
8 I 4,6
9 P 1.6 1.7 1.6 —_
9 I - 1.7 2.2 | 3.4
10 P 1.0 1.0 1.0 0.8 | 2.3 1.0 83.5(25)
10 T = 1.8 2.3 1 5.5

a. Shots of Series II did not punch hole in witness plate and would be

rated A on scale of Ref, 11, All other shots did puncture plate and

would be rated D on the same scale,

within constant veloclty range of pressure front.
when different from initial value.

23
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Of the twelve runs, ten exhibit initial velocities of 1.5
to 2.1 mm/usec; one has a velocity as low as 1 mm/usec; and one,
IITI-2, as high as 4.1 mm/pusec, This last shot should be exclud-
ed as completely atyplcal. 1In it, there was an interval of
54 pusec between the response of the trigger probe and that of
the second pressure probe; after that, an unusually high velocity
pPulse passed over the remalning probes. It is suggested that the
trigger probe was collapsed by a low pressure (0.8 kbar), fading
front or, possibly, immediately after the response of the
trigger probe, the burning front, near the nichrome wire, broke
into a large enough cavity in the charge to lower drastically the
pressure (and hence temperature) of this region. As the reaction
built up again, with a greater area of burning surface, it could
eventually exhibit a much higher rate dp/dt than usually found
and send out a high pressure, high velocity front. Such a later
front could not be detected by the first pressure probe (already
collapsed) but would register on the remaining probes to give
the curve seen in Fig. 7.

The lowest velocity run, III-10, is not atypical because
occasional velocities as low as 1 mm/psec have been observed in
the transitional region. This 1s the first very low velocity
shot in this work, however, which contained both pressure and ion
probes. The record is unusual in exhibiting an extremely long
interval (84 psec) between the pressure and ionization fronts.

In this case, the amplitude of the pressure wave was low - possi-
bly little more than the 0,8 kbar necessary to collapse the
probes; this is indicated by its low velocity. The ionization
front was probably established by a later, stronger pressure
front, and, after belng established, travelled at a veloclty
nearer that of 1ts initiating disturbance and well above that of
the first pressure front measured.

Also listed in Table 2 are the initial, and, in some cases,
later separation between the pressure and ionization fronts in
the constant velocity region of the former. The pressure front
always leads, and the trend 1s larger separation with decreasing
velocity (and hence amplitude) of the pressure front, a relation-
ship to be expected for a pressure dependent phenomenon.

The velocities of the last interval (probes 5 to 6) indicate
detonation for shots III-5, 10, and probably 2; but damage to the
witness plate indicated detonation for all of group III and I-1,
failure for group II. In a typical shot without the Lucite plug
(Fig. 4) steady state detonation was achieved at (or before)

186 mm from the nichrome wire. Probes 5 and 6 are respectively
122.2 mm and 173.0 mm from the nichrome wire, It appears
therefore, that the Luclite plug has not delayed the transition
to detonation. (This is also indicated by Figs. 6 through 9.)

24
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However, the location of the onset of detonatlion has varied so
widely (6 to 18 cm (13)) that control charges prepared at the

same time as the Lucite plug charges must be fired for a more

valid comparison on this point.

It is quite evident from the data of Table 2 that probe
measurements in the region of subsonic disturbances are
inadequate to show whether transition to steady state detona-
tion will occur within the DDT geometry. It 1s probable that
other factors such as method of casting of the charge, rate of
pressure bulldup around the hot wire, and the duration of the
confinement around the burning explosive are determinant.
Difference in castings 1s believed to be responsible for the
detonation of charges in Groups I and III and the failure to
detonate of those of Group II. A greater effort to control the
casting 1s being made, but there 1is as yet no quantitative
method of assessing the differences in the charges produced.
The variability of pressure buildup around the hot wire has
already been described in a previous section; comparable varia-
bility in subsonic disturbances can be seen in Figs. 6 through
9, More simultaneous measurements in the two regions will be
made. )

A start has been made in studying the third factor of
possible importance, the duration of confinement in the burning
area. By studying fragments recovered after the shots, it was
found that maximum plastic distortion of the tube is about 3 mm
on the radius. The maximum distortion is located about 4.7 mm
from the nichrome wire, but the entire distortion covers about
2.5 cm length along the tube (see Fig. 10). To obtain an idea
of the time required to effect this distortion, an external
probe was set up 1 mm from the tube wall at a longitudinal
location of 7.9 mm from the nichrome wire, The external probe
was used in shots III-9 and III-10; it was shorted out at 109.5
pusec and 92 psec respectively after the response of the trigger-
ing probe. As shown in Fig. 4, this gives an estimate of about
45 psec from the beginning of plastic deformation to a radial
increase of 1 mm and of about 114 psec from a pressure of 1 kbar
in the burning region to a radial distortion of 1 mm.

Despite the incomplete data of Tables 1 and 2, a result of
unpredictable difficulties 1in electronic instrumentation and
charge preparation, eight of twelve records clearly demonstrate
that the low velocity ionization front, interrupted by a short
non-reactive filter, will re-establish itself beyond the filter,
This has been established even if different assignments from
those of Table 1 are made. Moreover, runs III-9 and III-10 :
show that it is re-established within 12,7 mm (0,5 in.) of the
filter with apparently no effect on its propagation velocity.

25
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FIG. I0 FRAGMENTS OF TUBE SHOWING PRESSURE
RUPTURE IN VICINITY OF HOT WIRE
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The disturbance is, therefore, not dependent on transport
properties and should not be referred to as a flame front. It
is pressure initiated and propagated, and probably results, as
Madek suggested, from a partial reaction critically dependent
for its existence on the exact pressure level,

It is not clear how the ionization front observed here for
dense charges 1s related to the luminous combustion front
(0.8 mm/usec) observed by Griffiths and Groocock (14) in porous
charges. They may both be manifestations of the same phenomenon
i.e., a critically pressure dependent reaction. However,
proposed mechanisms of bulldup to the necessary pressure differ
in the two cases. For cast charges, the mechanism is a confined
burning in which any convective propagation is minor; for porous
charges, the suggested stages are slow conductive burning
followed by fast copvective burning (14). For cast charges the
greatest combustion” pressure is manifest within a distance of
one diameter from the igniter in contrast to the porous charges
where the largest combustion pressure appears 5 to 20 dlameters
downstream from the igniter.

Information about the low velocity ionlzation front in
cast explosives has been accumulated throughout the course of
the DDT investigation. Its present status can be summarized as
follows:

1. It is pressure initiated and propagated.

2. Its velocity of propagation 1is neither very reproduci-
ble nor strictly constant. Values between 1 and 2.5 mm/
pusec have been observed (15).

3. The assoclated pressure, as indicated by tube damage
is low (13).

It is not an ordinary deflagration; the ion probes which
detect it will not respond to ordinary flame fronts.

Its resistance of about 100 ohms is greater than that of
a detonation front (<1 ohm) but lower than that of
ordinary deflagration (13).

5. Because of properties 2 through 4, it is assumed to
result from a partial reaction - possibly on the grain
surface (15).

6. From a knowledge of steady state behavior in deflagra-
tion and detonation, the persistence of such a reaction
must depend on initiation by a quite critical pressure
amplitude (15).

* This 1s not a steady state but an accelerating reaction.

27
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In the present work, as in the past, the low-velocity
ionization front has been detected in every trial save those in
which fallure of instrumentation is suspected. Its appearance
is no indication of whether transition to detonation occurs.

It 1s bellieved to be an incidental phenomenon which occurs only
because, in the course of continuous pressure buildup, the
critical pressure for its initiation must be reached (as well as
passed). Since there is no obvious way in which it can contrib-
ute to the transition, further study of it wlill be made only in
conjunction with developing additional iInformation on the
transitional phenomena and factors affecting it.
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APPENDIX A

Estimate of Free Volume

From an exponential burni rate law and simple assumptions
for the gas products, Madek (12% derives the expression,

p
Vol dp
t= R
B _);o p(E-Dp)2

for the time for the pressure to rise from p_ to p. The con-

stants are defined in ref., 16, The integral may be represented
by the terms,

0

I -1 - | ) 1 )P
p - "p, | E(E-DP) E1n [(E-Dp)/n] 5
Vv C

so that t =7fl- — (1 -1

5 o o ). V, is the free volume. From
0

an experimental p-t curve, U42.4 psec is required for the pres-
sure to rise from 0.1 kbar to 5 kbar while I_ varies from

-0.026% to +0.00%1, A typical value of C/B gs 1.714. Therefore,
VO/A is given in terms of these values by

Vo 0.0000424
A 1.714(0.0031 + 0,02630)
= 8.41 x 1O-LL cm.
For a 1 cm cross-section, VO is roughly lO"3 cmB. A

volume of this magnlitude may be introduced into a charge by
withdrawal of a wire 1 cm long with a diameter of 0.03%65 cm.
Wire diameters of 0,0226, 0.0%20, and 0.0510 cm were chosen for
a set of nine shots of which four yielded readable records.
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APPENDIX B
Probe Positions and Charge Geometry .

I. Straln gage measurements

Distance from Closure End of Tube

Item _ in. mm (referred to hot wire)mm
End of bolt 1.50 38.1 -4.8

Nichrome wire 1.69 42.9 0]

Center of strain gage®  2.50 63.5 20.6

First ion probe 3.00 76.2 33.3

Second ion probe 6.00 152.4 109.5

Third ion probe 9.00 228.6 185.7

Fourth ion probe 12,00 304.8 261.9

End of tube 13.50 342.9 300.0

II. Lucite plug shots

(referred to first probe)

mm
End of bolt 1.50 38.1
Nichrome wire 1.69 42.9
Maximum distortion’ 1.88 47.6
External probe 2.00 50.8
First probe (pressure) 2.75 69.9 0.0
Probes 2 (press.& ion) 3,25 82.6 12.7
Probes 3 (press.& ion) 4,00 101.6 31.8
Lucite, front surface 4,75 120.7 50.8
Lucite, back surface 5.00 127.0 57.2

* Gage is 12.7 mm (0.5 in.) square

##Deformation symmetric about this point and covered about 25mm
length of tube
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APPENDIX B (Cont'd)

Group I
Distance from Closure End of Tube
in, mm  (referred to first probe)mm
Item
Probes 4 (press,& ion) 5,00+ 128.0+ 58,2
Probes 5 (press.& ion) T7.00 177.8 108.0
Probes 6 (press.g& ion) 9,00 228.6 158.8
Group II
Probes 4 (press.& ion) 6.00 152.4 82.9
Probes 5 (press.& ion) T7.00 177.8 108.0
Probes 6 (press.& ion) 9.00 228.6 158.8
Group I1I
Probes 4 (press.& ion) 5.50 139.7 69.9
Probes 5 (press,& ion) 7.50 190.5 120.7
Probes 6 (press.& ion) 9.50 241.3 171.5

The DDT tubes are seamless, cold-drawn steel, 31,8 mm (1.25 in.)
0.D., 12.7 mm (0.5 in.) I.D., 343 mm (13.5 in.) long with the
closure occupying 8.1 mm (1.50 in.) of the length and the cast
explosive, 305 mm (12.00 in.). The bursting strength of the
tubes is, by static tests, above 3.4 kbar (50,000 psi) where

the behavior is still elastic (2), and is probably near 5.4 kbar
(80,000 psi).
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